GMAT数学数据充分题排除法解题思路解析 真实案例透析DS高效做法

2024-04-27

来源: 易伯华教育

GMAT数学数据充分题排除法解题思路解析 真实案例透析DS高效做法

北京GMAT培训,GMAT备考资料,GMAT网课,GMAT培训机构,GMAT保分班,GMAT真题,GMAT课程

GMAT备考,除了背背背,更重要的就是练练练!通过练习,巩固知识,熟练技巧,最终才能在GMAT考试中发挥出色,取得好成绩,所以练习的重要性不言而喻。因此,小编为大家精心准备了GMAT考试各类题型的练习题和答案解析,帮助大家每日一练,为考试做好准备。一起来看今天的题目。

今日练习题为数学题,题目如下

If n is a positive integer and r is the remainder when (n-1)(n+1) is divided

by 24, what is the value of r?

(1) 2 is not a factor of n.

(2) 3 is not a factor of n.

A Statement (1) ALONE is sufficient, but statement (2) alone is not

GMAT数学数据充分题排除法解题思路解析 真实案例透析DS高效做法

sufficient.

B Statement (2) ALONE is sufficient, but statement (1) alone is not

sufficient.

C BOTH statement TOGETHER are sufficient, but NEITHER statement ALONE is

sufficient.

D EACH statement ALONE is sufficient.

E Statements (1) and (2) TOGETHER are NOT sufficient.

正确答案

C

解题思路

从条件1看,2不是n的约数,也就是说n是奇数,所以n+1和n-1都是偶数。

令n=1,代入(n-1)(n+1)/24得到余数为0

令n=3,代入(n-1)(n+1)/24得到余数为8

令n=5,代入(n-1)(n+1)/24得到余数为0

结果不唯一,所以不充分。

同理,条件2之下我们也可以代数来算:

令n=1,代入(n-1)(n+1)/24得到余数是0

令n=2,代入(n-1)(n+1)/24得到余数是3

令n=4,代入(n-1)(n+1)/24得到余数是15

结果亦不唯一,所以也不充分。

然后1+2,也就是说n是不能被3整除的奇数:

令n=1,代入(n-1)(n+1)/24得余数为0

令n=5,代入(n-1)(n+1)/24得余数为0

令n=7,代入(n-1)(n+1)/24得余数为0

...

结果唯一,所以1+2充分,选择C。

快速备考GMAT知识点

免费1对1规划学习方法

易伯华 GMAT知识点免费体验课
18小时免费体验课程
【18小时免费体验课程】

免费语言规划,留学规划

点击试听
  • 账号登录
社交账号登录