【逻辑思维】最新GMAT综合推理题解题思路汇总
北京GMAT培训,GMAT备考资料,GMAT网课,GMAT培训机构,GMAT保分班,GMAT真题,GMAT课程
IR也就是综合推理部分,是GMAT相对较新的一种题型。由于过去的老题目题量较小,导致了很多同学由于缺乏平时足够的练习,所以在这一类题目上很吃亏。那么我们就一起来做几道。多做多练才能提高!

现在跟大家分析一下解题思路:
Answers
1. Three-of-a-kind = A outscores B
Full House = A does not outscore B
Four-of-a-kind = A does not outscore B
2. C
3. B
4. first row = T does not outscore S
second row = T outscores S
third row = T outscores S
Explanations
1) Player A draw three-of-a-kind (worth 60 points), and does not discard, so
A’s hand is worth 60 points. In all three cases, B discards two cards, for a
reducing factor of 1/6.
(a) B’s final hand = three-of-a-kind, which is (60)*(1/6) = 10 points. A
outscores B.
(b) B’s final hand = Full House, which is (720)*(1/6) = 120 points. A does
not outscore B.
(c) B’s final hand = Four-of-a-kind, which is (3600)*(1/6) = 600 points. A
does not outscore B.
It wasn’t relevant in any of these scenarios, but notice the exact wording —
if A and B were tied, the answer would be “A does not outscore B.”
2) Player J, with two pair and no discards, has 36 points. Player K, with
three-of-a-kind and no discards, has 60 points. We want a combination worth more
than 30 points but less than 60 points.
(A) discard 1 card, three of a kind = (60)*(1/2) = 30. Less than 36, no
good.
(B) discard 2 cards, flush = (540)*(1/6) = 90. Higher than 60, no good.
(C) discard 2 cards, straight = (300)*(1/6) = 50. This could work.
(D) discard 3 cards, full house = (720)*(1/10) = 72. Higher than 60, no
good.
(E) discard 4 cards, full house = (720)*(1/60) = 12. Less than 36, no
good.
(C) is the only hand & discard combination that is in the required
range.
3) The five original cards in Player G’s hand are: 2 of Clubs, 5 of Diamonds,
8 of Hearts, 8 of Spades, and King of Diamonds. Player G discards the 2 of Clubs
and 5 of Diamonds, leaving two 8’s and a king. We know that Player G’s reducing
factor for this hand will be 1/6.
The highest possible hand would be four-of-a-kind, in the unlikely scenario
that G picked up the other two 8’s. That would result in (3600)*(1/6) = 600
points, the maximum.
The lowest possible hand would be if G picks up garbage and just has the two
8’s. That would result in (12)*(1/6) = 2 points, the minimum.
The range of any set is the max minus the min. Range = 600 – 2 = 598.
Answer = (B)
4) Player S’s hand is worth 300 points. That’s fixed. Now, we have to compare
T to that 300 point total. discard 4 of Diamonds & 7 of Clubs, winds up with
a flush
Scenario #1: discard 4 of Diamonds & 7 of Clubs, winds up with a flush.
Flush is worth 540, times the reducing factor of 1/6, for a point value of
540*(1/6) = 90, which is less than S. Player T does not outscore player S.
Scenario #2: discard 6 of Hearts, winds up with a full house. Full house is
worth 720, times reducing factor of 1/2, for a point value of 720*(1/2) = 360,
which beats S. T outscores S.
Scenario #3: discards 4 of Diamonds & 4 of Hearts & 6 of Hearts,
winds up with four-of-a-kind. Four-of-a-kind is worth 3600, times a reducing
factor of (1/10), for a point value of 3600*(1/10) = 360, which beats S. T
outscores S.
免费1对1规划学习方法
普林斯顿大学毕业